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Abstract— We consider the design of optimal static feedback
gains for interconnected systems subject to architectural con-
straints on the distributed controller. These constraints are in
the form of sparsity requirements for the feedback matrix,
which means that each controller has access to information
from only a limited number of subsystems. We derive necessary
conditions for the optimality of structured static feedback
gains in the form of coupled matrix equations. In general
these equations have multiple solutions, each of which is a
stationary point of the objective function. For stable open-loop
systems, we show that in the limit of expensive control, the
optimal controller can be found analytically using perturbation
techniques. We use this feedback gain to initialize homotopy-
based gradient and Newton iterations that find an optimal
solution to the original (non-expensive) control problem. For
unstable open-loop systems, the centralized truncated gain is
used as an initial estimate for the iterative schemes aimed at
finding the optimal structured feedback gain. We consider both
spatially invariant and spatially varying problems and illustrate
our developments with several examples.

Index Terms— Architectural constraints, interconnected sys-
tems, optimal decentralized control, structured feedback gains.

I. INTRODUCTION

Large-scale systems are ubiquitous in nature and in mod-
ern engineering applications. The individual components
of a large-scale system are often equipped with sensing,
computation, and actuation capabilities. A central question
in the control of such systems then becomes, what is a good
communication architecture between the controllers of the
different subsystems? Clearly there is a trade-off in play: the
best possible performance is attained if all controllers can
communicate to each other, and as a whole decide upon
the control action to be applied to each subsystem. This,
however, comes at the expense of excessive communication
and computation requirements. The other extreme is when
every controller acts in isolation, and applies a control
action to its corresponding subsystem based on its own
measurement of the subsystem’s output. This scenario places
minimum communication and computation requirements on
the controllers, but generally comes at the expense of poor
performance.

A desired scenario, and a reasonable middle ground, is the
local communication of subsystems with their immediate or
nearest neighbors, referred to as localized control. It is this
type of decentralized control that is the focus of the present
research effort.
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The synthesis problem of distributed control for inter-
connected systems has received considerable attention in
recent years [1]-[14]. For linear spatially invariant plants,
it was shown in [1] that optimal controllers are themselves
spatially invariant. Furthermore, for optimal distributed prob-
lems with quadratic performance indices the dependence
of a controller on information coming from other parts of
the system decays exponentially as one moves away from
that controller [1]. These developments motivate the search
for inherently localized controllers. For example, one could
search for optimal controllers that are subject to the condition
that they communicate only to other controllers within a
certain radius. However, the framework of [1] does not allow
the a priori specification of the communication architecture
of the distributed controller. Additionally, it does not provide
error bounds on the deviation from optimality if one were
to truncate the information dependence of every controller,
for example by confining it to communicating within a pre-
specified radius of itself.

Thus the problem of controller design for large-scale and
distributed systems is mostly dominated by the architectural
and localization constraints imposed on the controller. Such
design problems are well-known to be difficult, with almost
three decades of research in an area that has come to be
known as the ‘decentralized control of large-scale systems’;
see [15] and references therein.

A problem of wide interest is to search for an optimal
distributed controller that is a static gain (i.e., has no tempo-
ral dynamics) with a priori assigned localization constraints.
Such controllers are less sophisticated than dynamic con-
trollers, and thus may achieve lower performance, but have
the advantage of being much easier to implement. Most
architectural requirements on the distributed static controller
are in the form of sparsity constraints. We focus particularly
on cases where the static feedback gain can be partitioned
into banded matrices, which are non-zero only on the main
diagonal and a relatively small number of sub-diagonals.
Such banded structure translates to each controller using only
local information to compute the control action. We search
for structured controllers that minimize the H norm. We find
a coupled set of algebraic matrix equations that characterize
necessary conditions for the optimality of the structured static
controller.

The challenging aspect of solving the aforementioned
coupled equations is that they can have multiple solutions,
each of which is a stationary point of the norm minimization
problem. In general, it is not known how many local minima
exist or how to find them. For stable open-loop systems, we
consider the case of expensive control [16] in which a per-
turbation analysis of the necessary conditions for optimality
can be performed. The expensive control scenario restricts
the norm of the distributed gain as it tries to minimize

978



the use of control effort. Perturbation analysis results in
equations that are decoupled and thus readily solvable to
find expansion terms of arbitrarily high-order. This leads
to a unique optimal gain that is small in norm; this gain
can be used to initialize a homotopy-based gradient and
Newton iterations to determine optimal controller for smaller
values of control penalty. In this numerical scheme the
level of expensiveness of the control problem is successively
reduced and the resulting matrix equations are solved until
the original (non-expensive) control objective is recovered.
For unstable open-loop systems, we apply a spatial truncation
on the optimal centralized feedback gain to initialize an
iterative numerical scheme that is aimed at solving necessary
conditions for optimality subject to structural constraints.
An interesting example of this procedure arises in the case
of spatially invariant systems; for such systems the optimal
static feedback is a centralized gain whose spatial depen-
dence decays exponentially with distance [1]. We therefore
expect that the truncated gain would be a reasonable initial
estimate for the Newton-based iterative scheme that attempts
to find the optimal structured feedback gain.

The paper is organized as follows: in Section II the
structured optimal control problem is formulated and nec-
essary conditions for optimality are found. In Section III
we consider stable open-loop systems and apply a pertur-
bation analysis on these necessary conditions to find the
unique optimal expensive static controller. In Section IV
gradient- and Newton-based iterative schemes are used to
find stabilizing (locally) optimal distributed controllers. In
Section V we provide illustrative examples, and in Section VI
we summarize our developments.

II. NECESSARY CONDITIONS FOR OPTIMALITY

Consider the control problem

b = AY + Biw + Bau,
z = C1Y + Du,
Yy = 02¢a u = _Fy7
where C; = [QUQ 0]* and D = [O Rl/Q]*. The

matrix F' denotes the static feedback gain which is subject to
structural constraints. Specifically, the structural constraints
dictate the zero entries of the feedback gain. We assume that
the subspace S encapsulates these constraints and that there
is a stabilizing F' € S.

Upon closing the loop, the above problem can equivalently
be written as

¥ = (A—ByFCs)t + Byw,
Q12 (H2)
= |:_R1/2F02:| Y.

Note that w denotes exogenous signals and that the perfor-
mance output z encapsulates both the amplitude of the state
and that of the control input. We now consider the following
optimal control problem:

o Find the matrix F € S such that ||H||3 is minimized,
where H is the transfer function from w to z and || - |2
is the Ho norm.

It can be shown [17] that this optimal control problem is
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equivalent to
minimize J = trace (PB1B})

(A= ByFCy)* P + P(A— ByFCy)

= —(Q + C3F*RFCy), FeS.

Note that the first constraint in (SG) is nothing but the
Lyapunov equation A% P + P A, = —C}C corresponding
to the closed-loop system (H2). We remark that — when there
are no structural constraints on F' — the above problem is
strongly related to the static output-feedback LQR problem
considered in [18].

Most structural requirements on the gain F' are in the
form of sparsity constraints. A sparse matrix is populated
primarily with zeros and the pattern of the non-zero entries
describes the communication architecture of the distributed
controller; if the ¢jth block of F' is non-zero it means that
subsystem j is communicating its state to the controller of
the ¢th subsystem. We focus particularly on cases where
F is a banded matrix, i.e., it is only non-zero on its main
block-diagonal and a relatively small number of block sub-
diagonals. For vehicular platoons, such a banded structure
translates to each vehicle using only information about
the position and velocity of a relatively small number of
neighboring vehicles to control its own position and velocity.

Theorem 1 (Necessary conditions for optimality):

In order for matrix F' € S, with A — By F'Cy Hurwitz, to be
optimal for the problem (SG) it is necessary that it satisfies
the following set of equations:

(A= ByFCo)* P + P (A — ByFC)

= —(Q + C3F*RFC,), (NC1)
(A— BoFCy) L + L(A— BoFCy)* = —By B}, (NC2)
(RFCLLCY) o Is = (BLPLCS) o Is, (NC3)

subject to (SG)

where o denotes the element-wise multiplication of matrices
and the matrix /g is defined as

151y = {4

Remark 1: Similar necessary conditions for optimality of
fixed-order dynamic controllers appear in [19]. To differenti-
ate our results from those of [19], we note that the equivalent
of equation (NC3) in [19] is given in the form of summation
of matrix multiplications, which is much more expensive to
compute than (NC3). Further, for stable open-loop systems
we develop homotopy-based descent method by utilizing
the perturbation analysis in the limit of expensive control.
Also, the Newton direction for the design of static structured
feedback gains is determined for the first time in our work.

We consider (NC3) for a few important examples of S:

if I}; is a free variable,
if F;; = 0 is required.

o S is the subspace of diagonal matrices. In this case
Is = I. The optimality condition (NC3) becomes

(RFCyLCY) ol = (ByPLCY)ol,

which can also be written as diag {RFC2LC3} =
diag {B; PLC3}.

o S is the subspace of tridiagonal matrices. In this case
Is =T, where T is the tridiagonal matrix with elements
equal to one on the main diagonal, first upper, and first
lower subdiagonals. The optimality condition (NC3)
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becomes
(RFCLLCY)oT = (ByPLCY)oT.

o S is the subspace of N x2N matrices with tridiagonal
and diagonal N x N blocks. This scenario would arise,
for example, in vehicular platoons where the measure-
ment matrix Cy is a 2N x N matrix and its N x N blocks
correspond to position and velocity measurements. The
block corresponding to the velocity is diagonal if every
vehicle has access to its own velocity measurements.
The block corresponding to position is tridiagonal if ev-
ery vehicle has access to its own position and positions
of its immediate neighbors. In this case Is = [T I ] s
and the optimality condition (NC3) becomes

(RFCyLC3) o [T I] = (BsPLC3)o [T I].

Note that both T" and I in this equation have dimension
N x N. An alternative way of writing this equation is
as follows. Define

G = RFC,LC; — B3PLC; = [Gy Gs],

where G1, Gy are N x N partitions of GG. Then the
optimality condition (NC3) can be written as

GloT:O, GQOI:O.

Example 1 (mass-spring system): Consider a mass-spring
system shown in Fig. 1. If restoring forces are considered as
linear functions of displacements, the dynamics of the system
with unit masses and spring constants are given by

o I 0]
[ ] meme[2]

where I and O are, respectively, N x N identity and
zero matrices, and Agy := toeplitz([—2 10 --- 0]). We
consider a situation in which the control applied on the nth
mass has access to: (i) displacement and velocity of the nth
mass, and (ii) displacements of the p neighboring masses.
Thus, the output matrix Cs is the 2N x 2N identity matrix
and Is =[S, I], with S, being the identity matrix for
p = 0, a tridiagonal matrix of ones for p = 1, a pentadiagonal
matrix of ones for p = 2, and so on.

Fig. 1. Mass-spring system.

Consider now the problem (SG) where matrix C5 is a
banded matrix that contains the subsystems’ communication
architecture, and F' is a diagonal matrix. Let R = r I where
r > 0. Then it is easy to show that the necessary conditions
(NCI1)-(NC3) given in Theorem 1 simplify to

(A— ByFC3)" P + P(A— ByFCs)

= —(Q + C5F"RF(y),
(A— ByFCy)L + L(A— ByF(Cy)* = —B1Bf, (NC)
F = (1/r) (IB;PLC5) 0 1) ([CsLC3] 0 1)
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Condition (NC) consists of two Lyapunov equations in P
and L that are coupled together by the final equation.

The optimal structured static controller can thus be found
numerically by solving the coupled set of algebraic matrix
equations (NC). The challenging aspect of this problem lies
in the fact that these equations can have multiple solutions,
each of which is a stationary point of the objective function
J. In general, it is not known how many such local minima
exist or how to find them. This difficulty persists even in the
unstructured problems, as pointed out by [18]. In Section III
we demonstrate how these issues are circumvented in the
framework of expensive control.

A. Spatially invariant systems

If system (H2) is spatially invariant, then the application of
an appropriate Fourier transform leads to a family of systems
parameterized by the spatial frequency variable 6 [1]

Yo = (Ap — BapFpCap) by + Bigw,
12 . (H2)
20 = )
? “RY2F,Cap |1

For systems defined over discrete spatial lattice Z, the level
of spatial spread in (H2’) is determined by the presence
of the terms e®P? in the state-space parameters. Note that
j=+v/—1,0 €0, 27), and p € N; higher values of p indicate
larger spatial spread in (H2’). For example, the presence of
e*ti? (corresponding to p = 1) in Ay indicates communica-
tion with first immediate neighbors in the updating of the
state variables of each subsystem.

For spatially invariant systems, the optimal control prob-
lem (H2’) can always be formulated in such a way that matrix
C9 contains the subsystems’ communication architecture,
and F is independent of 0. In particular, for R = r[ the
necessary conditions for optimality (NC) further simplify to:

(Ag — BogFCa)" Py + Py (Ag — BogFCy)

= —(Qo + C3pF"RFCy),
(Ag — BogFCa9) Loy + Lg (Ag — B2gF'Cop)*

= — BigBiy,

F = (1/r) (/ BjoPyLgCiydb) (/ CagLgChydf) 1.
[ [

We make the following important observations:

(NC")

o There are no structural constraints on the matrix F'
in (NC’) as long as it provides the closed-loop stability;
i.e., as long as Ay — BogF'Coy is Hurwitz for each 6.

o The dimension of matrices in equations (NC’) is signif-
icantly smaller than that in equations (NC). In fact, the
‘scale’ of the problem is fully absorbed by the spatial
transform variable 6. This constitutes the main advan-
tage of applying (spatial) Fourier methods to spatially
invariant systems; as shown in [1], even for infinite-
dimensional systems, Fourier transform techniques ren-
der analysis and design problems to those for a 6-
parameterized family of finite dimensional systems.

o For systems defined over discrete spatial lattice Zy =
{0,...,N — 1}, the integration in the last equation
of (NC’) should be interpreted as summation over the
frequency variable 6 € {0,..., N—1}.
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Example 2 (system of single integrator vehicles on circle):

Consider a system of identical vehicles over an undirected
discrete circle Zp, where the derivative of the scalar
state of each vehicle is to be determined by the weighted
difference of the state of that vehicle and the average of
the states of its two immediate neighbors. In this case
0 € {0,...,N—1} and the optimal scalar feedback gain,
F = f; = const., for the control problem (H2’) with
{Ag = 0, Blg = ng = 1, 029 = 2(1 — COS(Q?'('@/ZV))7
Ry = r, Qp > 0} can be determined analytically and is

given by f1 = ((1/(7“ é\[;} Ca)) 9_1 (QG/CZG))UQ'

III. PERTURBATION ANALYSIS OF EXPENSIVE CONTROL

In this section we demonstrate that for stable open-loop
systems an expensive control scenario allows for a significant
reduction in the complexity of problem (SG).

Consider again (SG) where the open-loop system is as-
sumed to be stable (i.e., A is a Hurwitz matrix) and, for
simplicity, F' is restricted to being diagonal

J(F) = trace (PB;1BY)
(A — ByFCh)* P + P(A— ByFC)
—(Q + C3F*RF(C,),

The difficulty in solving this optimization problem is that it
is not convex in F'. We therefore consider a simpler problem
in which R = (1/¢) I, with 0 < € < 1; we will henceforth
refer to this as expensive optimal control problem. Then, by
representing P, L, and F' as

P = i P L = Z "L, F = Z e"F™)
n=20

n=1

substituting in (NC), and employlng perturbation analysis,
we obtain the set of conveniently coupled equations given
by (EXP). Note that these equations are only coupled in one
direction, in the sense that for any n > 1 the O(e™) equations
depend only on the solutions of the O(¢"~1) equations and
are not coupled among themselves. Thus the perturbation
expansion terms can be readily computed up to any order.

Matrix F' found by this procedure is the unique optimal
(in the sense of perturbations) solution of the expensive
optimal control problem. This is due to the fact that the
equations (EXP), under the assumption of convergence, give
a unique matrix F' = fo:l e"F(")_ In fact, the radius of
convergence of the perturbation parameter ¢ of the above
series expansions can be established in terms of the open-
loop system parameters.

minimize
subject to
F is diagonal.

IV. ALGORITHMS FOR COMPUTATION OF STRUCTURED
FEEDBACK GAINS

A. Gradient and Newton directions

We employ the standard iterative descent algorithms to
solve the optimization problem (SG). Specifically, given
an initial stabilizing feedback gain F, € S, the iterative
algorithm generates a minimizing sequence {Fj € S} as
follows

Fiy1 = Fy + spFa(Fr),

where F;(F},) is a descent direction of the objective function
J evaluated at Fj, and sj is the step-size. In this section,
we consider two descent directions: negative gradient and
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Newton directions. We determine step-size using the stan-
dard backtracking line search to guarantee the closed-loop
stability and a decrease in the value of J. The iterative
algorithms for computation of structured feedback gains are
then presented in Section IV-B.

The computational cost and the convergence rate of an
iterative algorithm depend heavily on its descent direction.
Generally speaking [20], gradient method is computationally
cheaper than the Newton’s method but the convergence rate
is linear. On the other hand, Newton’s method is compu-
tationally expensive but the convergence rate is quadratic.
Additional details about iterative algorithms and descent
directions can be found in [20], [21].

We next summarize the results for gradient- and Newton-
based iterations; detailed derivations are omitted due to
space limitation and will be reported elsewhere. The gradient
direction of the objective function J in (SG) is given by

F, = VJ(F) = 2(RFC,LC; — B3PLC3)ols, (1)

where P and L are, respectively, determined by (NCI)
and (NC2). Specifically, given F, the Lyapunov equa-
tions (NC1) and (NC2) are solved for P and L; the gradient
direction is then obtained by substituting these into (1).

If the optimization variable is a vector as considered in

standard optimization literature (e.g., [20], [21]), then the
Newton direction is given by
For = =(V2J(F) "t VI(F),

where V2J(F) is the Hessian of the objective function .J.
In this case, VJ(F) is a vector and V2J(F) is a square
invertible matrix. However, the optimization variable in our
case is a structured matrix which necessitates generalization
of the formula for F,,;. In this case, the Newton direction
represents the solution of the following linear equation

H(F) + VJ(F) = 0,

where H is a linear operator representing the generalized
Hessian for matricial optimization variables. In particular
the Newton direction F,,; of the objective function J is the
solution of the following linear equation in F with Fe S

—F, = 2RFCoL — GZy — By ZoL)Cy ols,  (2)

where G = RFCy— B3P and Z;, Z, represent the solutions
to the following Lyapunov equations

AaZy + Zy AY, = — (BoFCyL + LCEF*By),
ANy + Zy Ag = — (C3F*G + G*FCy),

respectively. Note that the unknown variables are Z, Z5 and
F. Specifically, given F', one first computes the gradient
direction F, and then solves the system of linear equa-
tions (2,3) for Fp; = F

It is noteworthy that the equations for the necessary con-
ditions for optimality (NC1)-(NC3) are nonlinear in variable
F and that the equations for the Newton direction are linear
in variable F. To solve for F, one approach is to vectorize F
using the Kronecker product [22] and to solve the resulting
linear equation.

3)

B. Implementation

It is assumed that the initial structured feedback gain
Fy gives a stable closed-loop system. With F; given by
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O(1) FO =0
A*pO) 4 pO4 = —Q
O(e) ALO) + LOA* = —B B}
FO = ([BsPOLOCs] o I) ([C2LO)C5] 0 I) !
A*p) L pg = (sz(l)cz)*p(o) + pO (BQF(l)C’Q) _ C’;F(l)*F(l)Cg
0O(e?) ALD 4+ LMW A* = (BoFMCy) 1O + LO) (ByFDOy)*
F@ = ([BsPOLMCs + BsPOLOCy — FOC,LMCE] o 1) ([CoLOC3] o I) 1
(EXP)
either the negative gradient direction, 73 = —F,, or the  objective is recovered. This algorithm effectively guides the

Newton direction, F; = F,,;, we next employ the standard
backtracking line search, with parameters a = 0.3 and
[ = 0.5 (see [21, p. 464]), to determine the step-size. In
addition to providing decrease in J, it is also necessary to
guarantee the closed-loop stability when selecting the step-
size. Hence, given descent direction F4 and step-size s = 1:

Stepsize search

repeat: s := (s

until: both conditions are satisfied

1) J(F +sF;) < J(F) + astrace(VJ(F)TFy);

2) Ag = A — Bo(F + sF4)Cs is Hurwitz.

Iterative algorithm

Given a stabilizing Fj, the iterative algorithm at each step
k is given by

1) compute descent direction Fy(F});

2) use step-size search to determine sg;

3) update Fy41 = Fj, + Sk]:d(Fk)-

until: stopping criterion ||V.J(F})|2 < € is reached.

C. Homotopy-based iterations

For stable open-loop systems, the design procedure of Sec-
tion III can be extended to non-expensive control regimes via
the use of homotopy (i.e., continuation) methods. Homotopy
methods are based on replacing the problem of interest by a
parameterized family of problems with following properties:
(i) the problem is easily solved for small values of the
parameter; and (ii) as the parameter value is increased the
problem transforms into the problem of interest.

We thus consider the following iterative scheme to find the
optimal structured F' that solves optimization problem (SG).
Let R = (1/e)I, where ¢ is a positive scalar and I is
the identity matrix. Treating € as the homotopy parameter,
we first find the optimal structured F' that minimizes (SG)
for very small values of €. This has the interpretation of
expensive control [16]; a small € results in a large R, which
in light of the output matrix in (H2) means that control
effort has to be spent sparingly. The solution of this problem
results in a structured feedback gain F' that is small in norm
and is computed easily and reliably using MATLAB (for very
small €, the matrix F' can be computed using the perturbation
analysis of Section III). We now slightly increase the value
of ¢ and use the obtained F' to initialize the next round
of gradient or Newton iterations. We continue increasing
the value of ¢ until the matrix R of the original control

optimization scheme through the many local minima.

V. EXAMPLES
A. Spatially varying mass-spring system
In this section we revisit a mass-spring system on a line
described in Example 1. The centralized optimal controller,
u = —K1, is given by K = R™!B3X, where X is the
positive definite solution of the algebraic Riccati equation

A*X + XA+ Q — XByR'B;X = 0.

The initial feedback gain Fy is determined by projecting K
onto the information structure S, that is

FO = [F()p FO’U] = KO[Sp I]

It turns out that Fp for any p > 0 is a stabilizing feedback
gain. Thus, the iterative descent algorithm of Section IV-A
can be initialized with Fy. We note that other approaches
have been developed to find a stabilizing feedback gain [7].
The stopping criterion for the algorithms is ||VJ(F)|]2 <
10~%. For system with NV = 50 masses, ) = I, and
R = 101, the change in initial and optimal values, Jy and
J*, with respect to the spatial spread p is reported in Table I.
The optimal value of J with the centralized feedback gain
K is J. = 230.7099. For smaller values of spatial spread p,
the iterative algorithms of Section IV-A effectively enhance
performance relative to truncated centralized controller. As
p increases, performance improvement becomes less sig-
nificant; this indicates that nearly optimal performance can
be achieved with truncated centralized controllers of large-
enough spatial spread.

TABLE I
INITIAL AND OPTIMAL VALUES Jo AND J* WITH RESPECT TO p FOR
MASS-SPRING SYSTEM WITH N = 50, @Q = I, AND R = 101.

p=0 p=1 p=2 p=3 p=4
Jo  270.2621 247.2561 243.6723 242.7422 242.4594
J*  248.6063 244.4403 242.8970 242.3327 242.1396

Comparisons between elements on the main diagonals of
(Fop, Fy) and (Fo,, Fy) for mass-spring system with {p =
1, N =50, Q = I, R = 10I} are given in Fig. 2(a) and

Fig. 2(b), respectively.
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Fig. 2. Comparison of elements on the main diagonals of: (a) initial and
optimal position feedback gains; (b) initial and optimal velocity feedback
gains. Mass-spring system of Example 1 with {p = 1, N =50, Q = I,
R =101} is considered.
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Fig. 3. Scaling of ||H||2 := (1/N)||H||3 with the number of vehicles
N for: (a) truncated optimal centralized controller (dashed) and structured
controller (solid) with spatial spread p = 4; (b) structured (with spatial
spread p = {1, 2, 3,4}) and centralized state-feedback controllers.

B. System of single integrator vehicles on circle

We next consider the design of structured controllers
of spatial spread p for a system of identical single in-
tegrator vehicles described in Example 2 with Cyy =
[2(1—cos(270/N)) --- 2(1 —cos (27rpH/N))]", F =
[fi - fp], and the following pair of state/control weights
(Qo,7) = (2(1 —cos(2w0/N)),1). The selected state
penalty accounts for the difference between the position of
vehicle n and the average of positions of two neighboring
vehicles. In this case, the optimal centralized state-feedback
controller, ug = —Kpy1)g, is given by Ky = Q:,/Q, and the op-
timal structured controller with p = 1 is given in Example 2.
To determine the structured controller with p > 2, we apply
Newton’s method to solving (NC’) by initiating the iterations
with a truncated centralized controller. Figure 3(a) illustrates
the performance comparison of the truncated centralized con-
troller and the structured controller with spatial spread p = 4;
clearly, Newton’s iteration provides appreciable performance
improvement relative to the truncated centralized controller.
The performance of structured controllers with spatial spread
p = {1,2,3,4} (obtained by applying Newton’s method
to (NC’)) and optimal centralized controller is shown in
Fig. 3(b). As expected, an increase in the spatial spread
decreases the performance gap between optimal structured
and optimal centralized designs.

VI. CONCLUSIONS

We study the static Ho synthesis problem subject to the
feedback gain satisfying certain sparsity constraints. These
constraints are such that they enforce a localized commu-
nication architecture between the underlying plant and the
controller. We find necessary conditions for optimality of
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localized controllers that are in the form of coupled matrix
equations. In general these equations have multiple solutions,
which correspond to different stationary points. However, for
stable open-loop systems, in the limit of expensive control,
perturbation methods can be used to find a unique optimal
controller. We use this controller to initialize a homotopy-
based numerical optimization scheme that determines op-
timal controller in the non-expensive regime. For unstable
open-loop systems, an iterative scheme utilizing gradient
and Newton’s methods is employed to determine a solution
to stationary conditions for optimality. The iterations are
initialized by projecting optimal centralized controllers to
the set of controllers with desired localization properties.
The presented algorithms appear to work well in practice
as demonstrated by illustrative examples in Section V.
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